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Completely monotone functions (CMF)

Bulgarian contributions: N. Obreshkov, Y. Tagamlitski, Bl. Sendov, H. Sendov

A function f : (0,∞)→ R is called completely monotone if it is of class C∞ and

(−1)nf (n)(t) ≥ 0, for all t > 0, n = 0, 1, ...

Elementary examples:

e−λt; t−1; (λ+ µt)−ν; ln
(
b+ µt−1

)
; ef(t), f ∈ CMF ;

where λ, µ, ν > 0, b ≥ 1.

Bernstein’s theorem: f(t) ∈ CMF iff

f(t) =

∫ ∞
0

e−tx dg(x),

where g(x) is nondecreasing and the integral converges for 0 < t <∞.

Joint Seminar of Analysis, Geometry and Topology Dept. 24.03.2015, p. 2/26



Bernstein functions (BF) and some useful properties

A C∞ function f : (0,∞)→ R is called a Bernstein function if

f(t) ≥ 0 and f ′(t) ∈ CMF .

Proposition:
(a) The class CMF is closed under pointwise addition and multiplication; The class
BF is closed under pointwise addition, but, in general not under multiplication;

(b) If f ∈ CMF and ϕ ∈ BF , then the composite function f(ϕ) ∈ CMF ;

(c) If f ∈ BF , then f(t)/t ∈ CMF ;

(d) Let f ∈ L1
loc(R+) be a nonnegative and nonincreasing function, such that

limt→+∞ f(t) = 0. Then ϕ(s) = sf̂(s) ∈ BF ;

(e) If f ∈ L1
loc(R+) and f ∈ CMF , then f̂(s) admits analytic extension to the

sector | arg s| < π and

| arg f̂(s)| ≤ | arg s|, | arg s| < π.
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The operators of fractional integration and differentiation

Jαt - the Riemann-Liouville fractional integral of order α > 0:

Jαt f(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ, α > 0,

where Γ(·) is the Gamma function.

Dα
t - the Riemann-Liouville fractional derivative

CDα
t - the Caputo fractional derivative

D1
t = CD1

t = d/dt; CDα
t = J1−α

t D1
t , Dα

t = D1
tJ

1−α
t , α ∈ (0, 1).
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Mittag-Leffler function

Fractional relaxation equation (λ > 0, 0 < α ≤ 1):

CDα
t u(t) + λu(t) = f(t), t > 0,

u(0) = c0.

The solution is given by:

u(t) = c0Eα(−λtα) +

∫ t

0

τα−1Eα,α(−λτα)f(t− τ) dτ.

Mittag-Leffler function (α, β ∈ R, α > 0):

Eα,β(−t) =

∞∑
k=0

(−t)k

Γ(αk + β)
, Eα(−t) = Eα,1(−t).

E1(−t) = e−t ∈ CMF
Eα(−t) ∈ CMF , iff 0 < α < 1 (Pollard, 1948)
Eα,β(−t) ∈ CMF , iff 0 ≤ α ≤ 1, α ≤ β (Schneider, 1996; Miller, 1999)
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Plots of Eα(−tα) for different values of α
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Plots of tα−1Eα,α(−tα) for different values of α
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Fractional evolution equation of distributed order

Two alternative forms:∫ 1

0

µ(β)CDβ
t u(t) dβ = Au(t), t > 0, (1)

and

u′(t) =

∫ 1

0

µ(β)Dβ
t Au(t) dβ, t > 0, (2)

A - closed linear unbounded operator densely defined in a Banach space X

Initial condition: u(0) = a ∈ X

Reference: E. Bazhlekova, Completely monotone functions and some classes of
fractional evolution equations, preprint, 2015, arXiv:1502.04647
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Two cases for the weight function µ:

• discrete distribution

µ(β) = δ(β − α) +

m∑
j=1

bjδ(β − αj), (3)

where 1 > α > α1... > αm > 0, bj > 0, j = 1, ...,m, m ≥ 0, and δ is the
Dirac delta function;

• continuous distribution

µ ∈ C[0, 1], µ(β) ≥ 0, β ∈ [0, 1], (4)

and µ(β) 6= 0 on a set of a positive measure.
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Discrete distribution:

Multi-term time-fractional equations in the Caputo sense

CDα
t u(t) +

m∑
j=1

bj
CD

αj
t u(t) = Au(t), t > 0, (5)

and in the Riemann-Liouville sense

u′(t) = Dα
t Au(t) +

m∑
j=1

bjD
αj
t Au(t), t > 0 (6)

If m = 0 (single-term equations):
problem (5) is equivalent to (6) with α replaced by 1− α.

All problems are generalizations of the classical abstract Cauchy problem

u′(t) = Au(t), t > 0; u(0) = a ∈ X. (7)
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Solution u(t) of (5) with A = −1 for:
m = 1, α = 0.75, α1 = 0.25,
m = 0, α = 0.25
m = 0, α = 0.75.
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Solution u(t) of (5) with A = −1 for:
m = 2, α = 0.75, α1 = 0.5, α2 = 0.25
m = 1, α = 0.75, α1 = 0.25,
m = 0, α = 0.25
m = 0, α = 0.75.
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Unified approach to the four problems

Rewrite problems (1) and (2) as an abstract Volterra integral equation

u(t) = a+

∫ t

0

k(t− τ)Au(τ) dτ, t ≥ 0; a ∈ X,

where
k̂1(s) = (h(s))

−1
, k̂2(s) = h(s)/s,

In the continuous distribution case:

h(s) =

∫ 1

0

µ(β)sβ dβ.

In the discrete distribution case:

h(s) = sα +

m∑
j=1

bjs
αj.

Define
gi(s) = 1/k̂i(s), i = 1, 2.
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Particular cases

In the single-term case:

k1(t) =
tα−1

Γ(α)
, k2(t) =

t−α

Γ(1− α)
, g1(s) = sα, g2(s) = s1−α,

In the double-term case:

k1(t) = tα−1Eα−α1,α(−b1tα−α1), k2(t) =
t−α

Γ(1− α)
+ b1

t−α1

Γ(1− α1)
,

g1(s) = sα + b1s
α1, g2(s) =

s

sα + b1sα1
= sk̂1(s)!!!

In the case of continuous distribution in its simplest form: µ(β) ≡ 1.

g1(s) =
s− 1

log s
, g2(s) =

s log s

s− 1
.
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Properties of the kernels

Theorem. Let µ(β) be either of the form (3) or of the form (4) with the additional
assumptions µ ∈ C3[0, 1], µ(1) 6= 0, and µ(0) 6= 0 or µ(β) = aβν as β → 0, where
a, ν > 0. Then for i = 1, 2,:

(a) ki ∈ L1
loc(R+) and limt→+∞ ki(t) = 0;

(b) ki(t) ∈ CMF for t > 0;

(c) k1 ∗ k2 ≡ 1;

(d) gi(s) ∈ BF for s > 0;

(e) gi(s)/s ∈ CMF for s > 0;

(f) gi(s) admits analytic extension to the sector | arg s| < π and

| arg gi(s)| ≤ | arg s|, | arg s| < π.

In the discrete distribution case a stronger inequality holds:

| arg gi(s)| ≤ α| arg s|, | arg s| < π.
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The classical abstract Cauchy problem:

u′(t) = Au(t), t > 0; u(0) = a ∈ X.

Main result:

Assume that the classical Cauchy problem is well-posed with solution u(t) satisfying

‖u(t)‖ ≤M‖a‖, t ≥ 0.

Then any of the problems

∫ 1

0

µ(β)CDβ
t u(t) dβ = Au(t), t > 0, u(0) = a ∈ X,

u′(t) =

∫ 1

0

µ(β)Dβ
t Au(t) dβ, t > 0, u(0) = a ∈ X

is well-posed with solution satisfying the same estimate.
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The classical abstract Cauchy problem:

u′(t) = Au(t), t > 0; u(0) = a ∈ X.

T (t) - solution operator (defined by T (t)a = u(t), t ≥ 0);

R(s,A) - resolvent operator of A:

R(s,A) = (s−A)−1 =

∫ ∞
0

e−stT (t) dt, s > 0,

The Hille-Yosida theorem states that the classical Cauchy problem is well-posed
with solution operator T (t) such that ‖T (t)‖ ≤ M, t ≥ 0 iff R(s,A) is well
defined for s ∈ (0,∞) and

‖R(s,A)n‖ ≤M/sn, s > 0, n ∈ N.
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Abstract Volterra integral equation

u(t) = a+

∫ t

0

k(t− τ)Au(τ) dτ, t ≥ 0; a ∈ X,

The Laplace transform of the solution operator S(t)

H(s) =

∫ ∞
0

e−stS(t) dt, s > 0

is given by

H(s) =
g(s)

s
R(g(s), A), g(s) = 1/k̂(s).

The Generation Theorem (Pruss, 1993) states that the integral equation is well-
posed with solution operator S(t) satisfying ‖S(t)‖ ≤M, t ≥ 0, iff

‖H(n)(s)‖ ≤M n!

sn+1
, for all s > 0, n ∈ N0.
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Main result

Theorem.
Suppose that the classical Cauchy problem is well-posed with solution u(t) satisfying

‖u(t)‖ ≤M‖a‖, t ≥ 0.

Then problems (1) and (2) are well-posed and their solutions satisfy the same
estimate.

Proof:
We know

‖R(s,A)n‖ ≤M/sn, s > 0, n ∈ N.
We have to prove

‖H(n)(s)‖ ≤M n!

sn+1
, for all s > 0, n ∈ N0,

where

H(s) =
g(s)

s
R(g(s), A),

and g(s) = 1/k̂(s), R(s,A) = (s−A)−1.
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By the Leibniz rule:

H(n)(s) =

n∑
k=0

(
n
k

)(
g(s)

s

)(n−k)

w(k)(s), w(s) = R(g(s), A). (8)

Formula for the k-th derivative of a composite function (P.Todorov, Pacific J.
Math., 1981):

w(k)(s) =

k∑
p=1

ak,p(s)(−1)pp!(R(g(s), A))p+1, (9)

where the functions ak,p(s) are defined by

ak+1,p(s) = ak,p−1(s)g
′(s) + a′k,p(s), 1 ≤ p ≤ k + 1, k ≥ 1, (10)

ak,0 = ak,k+1 ≡ 0, a1,1(s) = g′(s).

g(s) ∈ BF ⇒ (−1)k+pak,p(s) ∈ CMF . (11)

Proof: by induction.
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So far:

(−1)nH(n)(s) =

n∑
k=0

k∑
p=1

bn,k,p(s)(R(g(s), A))p+1 (12)

where

bn,k,p(s) = (−1)n+p
(
n
k

)(
g(s)

s

)(n−k)

ak,p(s)p!

Positivity?

(−1)k+pak,p(s) ≥ 0, g(s) ∈ BF ⇒ g(s)/s ∈ CMF , s > 0. (13)

⇒ bn,k,p(s) = (−1)n+p
(
n
k

)(
g(s)

s

)(n−k)

ak,p(s)p!

=

(
n
k

)
(−1)n−k

(
g(s)

s

)(n−k)

(−1)k+pak,p(s)p! ≥ 0

(−1)nH(n)(s) =

n∑
k=0

k∑
p=1

bn,k,p(s)(R(g(s), A))p+1
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⇒ ‖H(n)(s)‖ ≤
n∑
k=0

k∑
p=1

bn,k,p(s)‖(R(g(s), A))p+1‖

≤ M

n∑
k=0

k∑
p=1

bn,k,p(s)((g(s))−(p+1)

= M(−1)n(s−1)(n) = Mn!s−(n+1), s > 0.

where we have used that for A ≡ 0:

(−1)n(s−1)(n) =

n∑
k=0

k∑
p=1

bn,k,p(s)(g(s))−(p+1).

Therefore, the conditions of the Generation Theorem are satisfied and the problems
are well-posed with bounded solution operators S(t), satisfying ‖S(t)‖ ≤M , t ≥ 0.
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Subordination formula

T (t) - the solution operator of the classical Cauchy problem.
Under the assumptions of the previous theorem, the solution operator S(t) of
problem (1), resp. (2), satisfies the subordination identity

S(t) =

∫ ∞
0

ϕ(t, τ)T (τ) dτ, t > 0, (14)

with function ϕ(t, τ) defined by

ϕ(t, τ) =
1

2πi

∫ γ+i∞

γ−i∞
est−τg(s)

g(s)

s
ds, γ, t, τ > 0, (15)

The function ϕ(t, τ) is a probability density function, i.e. it satisfies the properties

ϕ(t, τ) ≥ 0,

∫ ∞
0

ϕ(t, τ) dτ = 1. (16)

Hint: take function ϕ(t, τ) such that Lt{ϕ}(s, τ) = g(s)
s e−τg(s), s, τ > 0.
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