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Completely monotone functions (CMF)

Bulgarian contributions: N. Obreshkov, Y. Tagamlitski, Bl. Sendov, H. Sendov

A function f : (0,00) — R is called completely monotone if it is of class C'*° and
(=)™ () >0, forallt >0, n=0,1,...
Elementary examples:
e~ M. L (A4 pt)™"; In (b + ,ut_l) . ef ) f e CMUF,

where \, u,v >0, b > 1.

Bernstein's theorem: f(t) € CMF iff

fo) = [ e dgta)

where g(x) is nondecreasing and the integral converges for 0 < t < .
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Bernstein functions (5F) and some useful properties

A C® function f : (0,00) — R is called a Bernstein function if
f(t) >0 and f'(t) € CMF.

Proposition:
(a) The class CMF is closed under pointwise addition and multiplication; The class
BF is closed under pointwise addition, but, in general not under multiplication;

(b) If f € CMF and ¢ € BF, then the composite function f(y) € CMF;
(c) If f € BF, then f(t)/t € CMF;

(d) Let f € L} (Ry) be a nonnegative and nonincreasing function, such that

loc ~C
lim; o0 f(t) = 0. Then ©(s) = sf(s) € BF;

AN

(e) If fe Li (Ry)and f € CMF, then f(s) admits analytic extension to the

loc
sector |arg s| < m and

AN

larg f(s)| < |args|, |args| <.
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The operators of fractional integration and differentiation

J - the Riemann-Liouville fractional integral of order o > O:

1

JEf(t) = m/o (t—7)*"tf(r)dr, a>0,

where T'(-) is the Gamma function.

DY - the Riemann-Liouville fractional derivative

D¢ - the Caputo fractional derivative

D} =D} =d/dt; “Df=J/"“D{, D{f=D;J;~% «ac(0,1).
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Mittag-Leffler function

Fractional relaxation equation (A >0, 0 < o < 1):

“Du(t) + Mu(t) = f(t), t >0,
u(0) = co.

The solution is given by:

u(t) = coFEo(—AtY) + /0 T By o(— AT f(t — 7) dT.

Mittag-Leffler function («, 8 € R, a > 0):

Eop(—t)=>_

0

Eo(—t) = Eq1(—1).

(—1)"
I'(ak+B)’
El(—t) —e tcCMF

Eo(—t) € CMF, iff 0 < a < 1 (Pollard, 1948)
E,p(—t) e CMF,iff 0 <a <1, a < (Schneider, 1996; Miller, 1999)
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Fractional evolution equation of distributed order

Two alternative forms:

/0 wW(B)°DPu(t) df = Au(t), t> 0, (1)

and

W (t) = / W(B)DE Au(t)dB, >0, 2)

A - closed linear unbounded operator densely defined in a Banach space X

Initial condition: u(0) =a € X

Reference: E. Bazhlekova, Completely monotone functions and some classes of
fractional evolution equations, preprint, 2015, arXiv:1502.04647
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Two cases for the weight function pu:

e discrete distribution
p(B) =d(B—a)+ > b6(B - ay), (3)
j=1

where 1 > a > aj... > a,, >0, b; >0, j=1,...,m, m >0, and 9 is the
Dirac delta function;

e continuous distribution

p € Cl0,1], u(B) >0, B€l0,1], (4)

and p(B) # 0 on a set of a positive measure.
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Discrete distribution:

Multi-term time-fractional equations in the Caputo sense
“Dul(t —|—Zb “D.7u(t) = Au(t), t >0,

and in the Riemann-Liouville sense
u'(t) = D& Au(t +Zb D;7Au(t), t>0
71=1

If m = 0 (single-term equations):
problem (5) is equivalent to (6) with « replaced by 1 — a.

All problems are generalizations of the classical abstract Cauchy problem

u'(t) = Au(t), t>0; u(0)=acX.

(5)

(7)
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Solution u(t) of (5) with A = —1 for:
m=1, a=0.75, a; = 0.25,
m=0, a =0.25

m =0, a =0.75.
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a =075, o, =0.5, 022:[:].25

0.2

0.1

Solution u(t) of (5) with A = —1 for:
m = 2, a = 075, 1 = 05, 9o = 0.25
m=1, a=0.75, a; = 0.25,

m=0, a =0.25

m =20, o« =0.75.
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Unified approach to the four problems
Rewrite problems (1) and (2) as an abstract Volterra integral equation
t
u(t) = a +/ k(t —7)Au(r)dr, t>0; a€X,
0
where

kr(s) = (h(s)) ™", ka(s) = h(s)/s,

In the continuous distribution case:

In the discrete distribution case:
m
h(s) = s+ Z b;s™.
J=1

Define

AN

gi(s) = 1/ki(s), 1=1,2.
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Particular cases

In the single-term case:

ta—l t—oz
ki(t) = ka(t) = = 5 =5
1( ) F(a)a 2( ) F(l _ Ck)’ gl(S) S, 92(8) S .
In the double-term case:
ki(t) = to‘_lEa_a a(=b1t™ ), ko(t) = 2 + by L
L ’ 'l — «) (1 — 041)7
g1(s) = s“ + 015t gao(s) = " +Sb18a1: sk (s)N!

In the case of continuous distribution in its simplest form: u(3) = 1.

s—1 _ slogs

ga(s) = s _ 1

g1(s) = log s’
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Properties of the kernels

Theorem. Let 1(5) be either of the form (3) or of the form (4) with the additional
assumptions p € C>[0,1], u(1) # 0, and ©(0) # 0 or u(B) = aB” as B — 0, where
a,v>0. Then fori=1,2,:

(a) k'@ c Ll (R+) and limt_>+oo k‘z(t) = O;

loc

b) ki(t) € CMF for t > 0;

larg gi(s)| < |args|, |args| <.
In the discrete distribution case a stronger inequality holds:

larg gi(s)| < alargs|, |args| <.
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The classical abstract Cauchy problem:

u'(t) = Au(t), t>0; u(0)=ac€X.

Main result:

Assume that the classical Cauchy problem is well-posed with solution u(t) satisfying
lu(®)[| < Mllal|, t=>0.

Then any of the problems

/01 w(B)°DPu(t)dB = Au(t), t>0, u(0)=ac X,

1
(1) = / W(B)DP Au(t)dB. t>0, u(0)=acX
0
is well-posed with solution satisfying the same estimate.
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The classical abstract Cauchy problem:

u'(t) = Au(t), t>0; u(0)=acX.
T'(t) - solution operator (defined by T'(t)a = u(t), t > 0);

R(s, A) - resolvent operator of A:

Ris. A) = (s — A)~! = / e~ST(1) dt, s> 0,
0

The Hille-Yosida theorem states that the classical Cauchy problem is well-posed
with solution operator T'(t) such that ||T(t)|| < M, t > 0 iff R(s,A) is well
defined for s € (0, 00) and

|R(s, A)"|| < M/s"™, s>0, neN.
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Abstract Volterra integral equation

t
u(t) =a —|—/ k(t —17)Au(r)dr, t>0; ac€X,
0
The Laplace transform of the solution operator S(t)
H(s) :/ e "*S(t)dt, s>0
0

is given by

The Generation Theorem (Pruss, 1993) states that the integral equation is well-
posed with solution operator S(t) satisfying ||S(t)|| < M, t > 0, iff

n n!
[HO(s)] < Mo,

for all s > 0, n € Ny.
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Main result

Theorem.
Suppose that the classical Cauchy problem is well-posed with solution u(t) satisfying

lu(t)]| < Mlfal|, t=0.

Then problems (1) and (2) are well-posed and their solutions satisfy the same
estimate.

Proof:
We know
|R(s, A)"|| < M/s", s>0, neN.

We have to prove

n!
Sn—l—l’

|H™ ()| < M for all s > 0, n € Ny,

where
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By the Leibniz rule:
n (n—k)
a0 =3 (") (L2) T w®(s), wis) = Rg(s), 4. (8)
> (1) (%) :

Formula for the k-th derivative of a composite function (P.Todorov, Pacific J.
Math., 1981):

k
w®(s) =) anp(s)(—1)PPU(R(g(s), A)P*, (9)

where the functions ay ,(s) are defined by
ar41,p(8) = app-1(5)9'(s) +ap ,(s), 1<p<k+1, k>1, (10)

ak.0 = ak k+1 = 0, 0»1,1(8) — 9/(3)-

g(s) € BF = (=1)**Pq;, ,(s) € CMF. (11)
Proof: by induction.
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So far:
(—1)"H"™ (s Zzbn kp(5)(R(g(s), A))PH (12)

k=0 p=1
where (n—k)
s
breal) = (-1 () (@) oy (0
Positivity?
(=) *Pay ,(s) >0, g(s) € BF = g(s)/s € CMF, s> 0. (13)

(ST HOS) = 303 b 5) Rlgls), A

k=0 p=1
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= [HMG) < Y0 baws(9)(R(g(s), AP

k=0 p=1

n k
< MY bugp(s)((g(s) @Y
k=0 p=1

= M((-1D"(s~H™ = Mpls— D 5> 0.

where we have used that for A = 0:

(1™ =3 bakap(s)(g(s) Y

k=0 p=1

Therefore, the conditions of the Generation Theorem are satisfied and the problems
are well-posed with bounded solution operators S(t), satisfying ||S(¢)|| < M, t > 0.
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Subordination formula

T'(t) - the solution operator of the classical Cauchy problem.
Under the assumptions of the previous theorem, the solution operator S(t) of
problem (1), resp. (2), satisfies the subordination identity

S(t) = / o(t, )T (T)dr, t >0, (14)
0
with function (¢, 7) defined by

1 y-+ioco
o(t,7) = —/ est=79(s) @ds, v, t, 7 > 0, (15)
0

27T1 —ico

The function (t, 7) is a probability density function, i.e. it satisfies the properties
o(t, 7) >0, / o(t,7)dr = 1. (16)
0

Hint: take function (¢, 7) such that £;{p}(s,7) = @6_79(3), s, 7> 0.
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